Regulation of Intracellular Calcium by Endoplasmic Reticulum Proteins in Small Intestinal Interstitial Cells of Cajal
نویسندگان
چکیده
Background/Aims We investigated the role of representative endoplasmic reticulum proteins, stromal interaction molecule 1 (STIM1), and store-operated calcium entry-associated regulatory factor (SARAF) in pacemaker activity in cultured interstitial cells of Cajal (ICCs) isolated from mouse small intestine. Methods The whole-cell patch clamp technique applied for intracellular calcium ions ([Ca2+]i) analysis with STIM1 or SARAF overexpressed cultured ICCs from mouse small intestine. Results In the current-clamping mode, cultured ICCs displayed spontaneous pacemaker potentials. External carbachol exposure produced tonic membrane depolarization in the current-clamp mode, which recovered within a few seconds into normal pacemaker potentials. In STIM1-overexpressing cultured ICCs pacemaker potential frequency was increased, and in SARAF-overexpressing ICCs pacemaker potential frequency was strongly inhibited. The application of gadolinium (a non-selective cation channel inhibitor) or a Ca2+-free solution to understand Orai channel involvement abolished the generation of pacemaker potentials. When recording intracellular Ca2+ concentration with Fluo 3-AM, STIM1-overexpressing ICCs showed an increased number of spontaneous intracellular Ca2+ oscillations. However, SARAF-overexpressing ICCs showed fewer spontaneous intracellular Ca2+ oscillations. Conclusion Endoplasmic reticulum proteins modulated the frequency of pacemaker activity in ICCs, and levels of STIM1 and SARAF may determine slow wave patterns in the gastrointestinal tract.
منابع مشابه
Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes
Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...
متن کاملInvolvement of thromboxane a(2) in the modulation of pacemaker activity of interstitial cells of cajal of mouse intestine.
Although many studies show that thromboxane A(2) (TXA(2)) has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of TXA(2) on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by TXA(2) in ICC with whole cell patch-clamp technique. Externally applie...
متن کاملModulation of pacemaker potentials by pyungwi-san in interstitial cells of cajal from murine small intestine: pyungwi-san and interstitial cells of cajal.
OBJECTIVE Pyungwi-san (PWS) plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. METHODS Enzymatic digestion was used to dissociate ICCs from the small intestine ...
متن کاملEffects of ATP on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Small Intestine
Purinergic receptors play an important role in regulating gastrointestinal (GI) motility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate GI smooth muscle activity. We studied the functional roles of external adenosine 5'-triphosphate (ATP) on pacemaker activity in cultured ICCs from mouse small intestines by using the whole-cell patch clamp technique and intracellular Ca2+...
متن کاملOn the origin of rhythmic calcium transients in the ICC-MP of the mouse small intestine.
Interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are pacemaker cells of the small intestine, producing the characteristic omnipresent electrical slow waves, which orchestrate peristaltic motor activity and are associated with rhythmic intracellular calcium oscillations. Our objective was to elucidate the origins of the calcium transients. We hypothesized that calcium os...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2018